
Heat transfer in tube assemblies under 
conditions of laminar axial, transverse and 
inclined flow 
K. A. Antonopoulos* 

This paper considers laminar flow heat transfer in tube assemblies. The main 
interest is focused on the virtually unexplored cases of heat transfer under 
conditions of fully-developed flow inclined to the axes of the tubes and of purely 
transverse developing flow. The limiting cases of purely axial or purely transverse 
fully-developed flow are also examined. In all cases, the thermal boundary 
condition on the tubes is constant heat flux. Governing differential equations are 
expressed in terms of curvilinear-orthogonal coordinates and solved using finite- 
differences. Results are compared with available theoretical and experimental data. 
The effect of the transverse component of the flow on the temperature distribution 
is found to remain very strong even in nearly-axial flows and therefore considerably 
higher heat transfer coefficients are exhibited by a nearly-axial flow than a purely 
axial one 
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Heat transfer aspects of a computational study of laminar 
flow heat transfer in tube assemblies are presented here. 
The hydrodynamic aspects were covered elsewhere 1'2. 

Tube assemblies (Fig l(a)) feature in many types of 
industrial equipment including heat exchangers, boilers, 
condensers and nuclear reactors. The simplest cases of 
heat transfer in tube assemblies occur under conditions of 
purely 'axial' fully-developed flow, for example in a 
nuclear reactor fuel assembly with heat extracted by a 
parallel flow of coolant, or under conditions of purely 
'transverse' fully-developed flow, found in certain types of 
heat exchangers in which one stream is directed normal to 
the tube axes. These limiting cases are rare in practice. 
Thus, for example, there may be insufficient space for flow 
and heat transfer development; baffles may be introduced 
to change the flow direction to increase heat transfer, thus 
resulting in a flow inclined to the tube axes (Fig l(a)). The 
latter cases are those of primary interest here. 

Previous theoretical analyses of heat transfer in 
tube assemblies I have been confined to the limiting cases 
of the fully-developed purely axial and purely transverse 
flow. The studies of Sparrow et al 3 (laminar), Dwyer and 
Berry 4, Pfann s and Deissler and Taylor 6 (turbulent) are 
typical of the first case and those of Le Feuvre 7 and 
Massey s (laminar and turbulent) of the second. All of 
these studies are based on a numerical solution of the 
governing differential equations except for the solution of 
Sparrow et al which is analytical. 

The limiting cases of heat transfer under 
conditions of fully-developed purely axial and purely 
transverse flow are examined here, although the main 
objective is to give an insight into the hitherto almost 

* National Technical University of Athens, Mechanical Engineering 
Department, Thermal Section, 42 Patission Street, Athens 106 82, 
Greece 
Received 21 September 1984 and accepted for publication on 25 
February 1985 

unexplored cases of heat transfer under conditions of 
fully-developed inclined flow and of developing purely 
transverse flow. The method of investigation is 
computation, ie the governing differential equations are 
expressed in terms of curvilinear-orthogonal coordinates 
and solved numerically using finite-differences. The calcu- 
lations reported here concern laminar flow; current 
explorations of turbulent flow will be reported in a later 
publication. 

Differential equations and coordinate 
system 
The solution domain is of the irregular shape shown in the 
examples of Fig l(b) (cross-sectional view) and in enlarged 
isometric view in Fig l(c). To map this domain completely 
so that all boundaries are traced by coordinate surfaces, 
the coordinate frame ~ - r / - (  (Fig l(c)) is employed; 
coordinates ~ and r/ on the cross-sectional plane are 
orthogonal-curvilinear while ( is rectilinear and is aligned 
in the axial direction. 

The transport equations governing steady three- 
dimensional viscous flow and heat transfer, in terms of the 
coordinates ~, ~/and ~, can be written in the following 
common form: 

1 a 1 d d 

1¢1~ 0¢ F ,  --~ 

1 c3 (F¢li c~'~/ l ~ a  / c~ 

where • is the dependent variable and may stand for the 
velocity components u, v, w, in the ~, r/, ( directions 
respectively (Table 1) and for the temperature TOe • = u, 
v, w, T). S® is the source of the property ~:  when ~ stands 
for any of the velocity components, S® contains the 

Int. J. Heat ~ Fluid Flow 0142-727X/85/O30193-12S3.00© 1985 Butterworth & Co (Publishers) Ltd 1 93 



K. A. Antonopoulos 

appropriate pressure gradient term as well as terms 
arising from the coordinate curvature/. When ~ stands 
for the temperature T, S. is taken to be zero. The term F® 
in Eq (1) is the 'exchange coefficient' for property ~:  thus 
when ~ stands for the velocity components, F® is the 
viscosity # while when • stands for the temperature, F .  is 
the ratio k/cp of the thermal conductivity to the specific 
heat of the fluid. Associated with the coordinates ~ and q 
are the spatially-varying metric coefficients 1¢ and l, 
respectively, which link increments of curvilinear co- 
ordinate and physical distance, The continuity relation- 
ship closes the set of equations, ie: 

1 0 1 c~ 8 
l¢l~ ~ ( p u l " ) + ~ N  (pvl¢)+-~ (pw)=O (2) 

Boundary conditions 
The boundaries of the solution domain (Fig l(c)) include 
symmetry planes, solid walls and inlet and outlet planes. 

On a symmetry plane the velocity normal to this 
symmetry plane is zero as are the normal gradients of 
temperature and of all other variables. On a tube wall the 
velocity components are set to zero and the temperature 
or heat flux is prescribed. 

The boundary conditions at the inlet and outlet 
planes depend on the heat transfer case to be simulated. 
These boundary conditions and the manner of imposing 
them are discussed when the various heat transfer ca~es 
are examined. 

Solution procedure 
The solution procedure is based on the finite-difference 
formulation of Caretto et al 9 suitably modified ~'2 to 
incorporate the orthogonal-curvilinear coordinates. 
Accordingly only a brief outline of the solution procedure 
is given here. 

A typical computational mesh employed for the 

Notation 
Ac Cross-sectional area of a subchannel 
a Coefficient in finite-difference equations 
Cp Specific heat at constant pressure 
D Tube diameter 
h Local heat transfer coefficient, 

h = ~/(T.  - Tba) 
/T Average heat transfer coefficient, 

1 o° h= re(D/2) h do 

Thermal conductivity 
Metric coefficients associated with the 
coordinates ~ and tl respectively 
Mass flow rate in the axial and transverse 
directions respectively 

4;D Nu Local Nusselt number, Nu= 
k ( r ~  - r~)'  

where for purely axial flow Tb = Tba, for 
purely transverse flow Tb = Tb~ for 
0 ° ~< ~o ~< 90 ° and Tb = Tb0 for 90 ° ~< ~o ~< 180 °, 
and for inclined flow Tb = Tbl 

Nu Average Nusselt number, 

Nu -to(D/2) Nu ~ d~o 
P Distance between axes of parallel tubes 

(pitch) 
p Local pressure 
Pr Prandtl number, Pr= #cp/k 
Pw Wetted perimeter 
0 Total heat input to the solution domain per 

unit of time 
~" Local wall heat flux 
Re~ Axial Reynolds number, Rea = pffD/# 
Rec Transverse Reynolds number, Re~ = pffD/# 
Re Renolds number of an inclined flow, 

Re = p UD/# 
St Average Stanton number, 

st -n(O/2~ Jo pt~cdT~- T~) 2 d~o 

S® Source term in the transport equations 

k 
l~,l,, 

ma,~ 

T 
Tb 

Tba 

Tw 
T* 

U,U,W, 

r .  

~,~ 

® 

# 

P~ 
P 

tp 

Local fluid temperature 
Bulk fluid temperature taken a s  Tba , Tbl , or 
Tb0 depending on the case 
Bulk fluid temperature in the cross-section 
plane, 

Tb a = 1A, ff: fAo wTdA~ 

Bulk fluid temperature at the inlet of the 
cross-section 

Bulk fluid temperature at the outlet of the 
cross-section, 

Local wall temperature 
Dimensionless temperature, T* = 
k ( r -  TbR)/(q;P,) 
Dimensionless temperature, T* = 
k (Y-  Tb,)/((t;P.) 
Mean velocity in the direction of an 
inclined flow 
Velocity components in the 4, q, 
directions respectively 
Mean transverse velocity through the 
minimum cross-section 
Mean axial velocity 
Exchange coefficient for property (I) 
Rectilinear coordinate in the axial direction 
Curvilinear-orthogonal coordinates on the 
cross-sectional plane 
Angle of inclination of the bulk velocity to 
the tube axes, ® = arctan(ff/~) 
Molecular viscosity 
Bulk fluid viscosity 
Viscosity near tube wall 
Fluid density 
General dependent variable which may 
stand for u, v, w, T 
Angular position of a point on tube surface 
measured from the rear of the tube 
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I 

Axiol 
flow flow < ~  ~,%Tronsverse 

I nclined " ~  f low 
a 

finite-difference solution of Eq (1) and (2) is shown in the 
example of Fig l(d) (cross-sectional view). This is 
generated numerically to fit the irregular shape of the 
solution domain and the metric coefficient 1¢,/, and other 
required coordinate information are then deduced. The 
approach used is to solve the Laplacian differential 
transformation equations connecting the physical and 
curvilinear coordinates. 

The differential momentum and energy ~quations 
(1) are cast into finite-difference form by integration over 
six-sided control volumes (Fig l(d)) to yield equations of 
the form: 

a . ~  = Y~ aneo + s®,~ (3) 
n 

where • stands for u, v, w and T, coefficients 'a' express the 
combined effects of convection and diffusion (approxi- 

er 

- - J 'u . .o , , .L .  P, 

of 
symmetry ~ N 

D 

\ j  . , k .J  o 

, . j  i • 

~ _ _ d  | 

2 Fig 1 Flow in tube as lies (a) axial, transverse and 
inclined flow, (b ) in-line and staggered assemblies in cross- 
sectional view with indication of  solution domain, (c) 
solution domain and coordinate system, (d) typical 
computational grid (cross-sectional view) with indication of  
control volume, and (e) solution domain with extra row of 
cells at the outlet used for the solution of  fully-developed 
transverse or inclined flow I H 
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Table I Symbols in Eq (1) 

Eq (1) Variable ¢ F® So 

l-momentum u # Su 
r/-momentum v /~ Sv 
~-momentum w # Sw 
Energy T k/c o 0 

mated by a hybrid central/upwind difference operator); 
S®,p contains central-difference approximations to the 
remaining terms; and the summation is over the neigh- 
bours E, W, N, S, D, U of the typical node P (Fig l(d)) of 
each control volume. The continuity equation (2) is 
approximated by central differences and is used in 
conjunction with the momentum finite-difference 
equations to derive a pressure perturbation equation 
similar in form to Eq (3). The resulting equation set is 
solved by an iterative ADI (Alternating-Direction- 
Implicit) algorithm. 

Heat  t ransfer  cases examined 

Differential Eqs (1) and (2), which correspond to an 
arbitrary three-dimensional flow and heat transfer, are 
modified here to simulate heat transfer under conditions 
of: 
(a) purely axial fully-developed flow (ie inclination angle 
O = arctan(ti/~3)= 0 °) 
(b) purely transverse fully-developed flow (® = 90 °) 
(c) purely transverse developing flow ((9 = 90 °) 
(d) fully-developed uniformly inclined flow (0 ° < ® < 90°). 

The simplifications applied to Eqs (1) and (2) result in a 
considerable reduction in computer storage and time 
compared with the general case. Extracts are shown from 
a wide range of heat transfer prediction for these cases: 
corresponding results concerning hydrodynamics are 
given elsewhere 1'2. 

Although the interest of the present work lies in the 
cases (c) and (d) above, the first two cases were included 
mainly to allow the accuracy of the method to be 
evaluated by comparison with existing theoretical and 
experimental data. This was particularly important 
because there is virtually no such information for the 
inclined and developing cases. 

The fineness of the grids employed for the 
numerical solution of the governing equations in each 
case have been defined by performing grid dependence 
tests 1. 

Heat transfer for purely axial ful ly-developed 
f low 

Equations and boundary conditions 
In this case (inclination angle ® = 0 °) Eqs (1) and (2) are 
simplified as follows: first, the condition of full develop- 
ment of flow and heat transfer implies that all derivatives 
with respect to the axial coordinate ~ vanish, with the 
exception of terms dp/~9~ and a(pwT)/O~. Also, transverse 
velocities u and v are set to zero. The problem is therefore 
described by the following equations: 

Momentum equation in the ~-direction: 

1 0 f l~Ow'~ 1 0/" l~Ow'~ Op 
(4) 

1~/~ 0~ ~# ~ - ~ ) + / ~ / ~ # / - ~ ) =  0-~ 

Energy equation: 

The solution can therefore be confined to a single cross- 
sectional plane ~ -  ~/with the axial pressure gradient term 
~p/O{ and the axial temperature gradient term O(pwT)/O{ 
treated as follows: the term @/a{ is prescribed as an input 
or it is adjusted during the solution procedure so that the 
desired mass flow rate is obtained. Under the boundary 
condition of uniform wall heat flux ~ ,  the term O(pwT)/~( 
is explicitly known 1°, ie: 

" t t  

~{ kmaCp / 

where r/~ is the mass flow rate and P,  the wetted 
perimeter. The above value of O(pwT)/a~ is inserted as a 
source term during the solution of the energy Eq (5). 

The boundary condition of uniform wall Mat flux 
is used on the solid boundaries (ie tube surfaces AF and 
DE in Fig 2) of the solution domain while on all other 
boundaries (AB, BC, CD, EF in Fig 2) which are planes of 
symmetry, the normal gradients of temperature and 
velocity are set to zero. 

Results 
Computed contours of dimensionless temperature T* 
(which by definition, is a function of geometry only) for a 
square arrangement of pitch-to-diameter ratio P/D = 1.5 
are shown in Fig 2. The maximum T* is obtained on the 
rod surface at locations coinciding with the narrowest 
passages and the minimum occurs at the centre of the 
cross-section, as expected. 

It can be proven easily 1 that under the present 
conditions (ie purely axial fully-developed flow with 
uniform heat flux boundary condition) the mean Nusselt 
number Nu is constant, depending only on geometry. The 
Nu =constant relation has been verified by the present 
predictions and the results for the square and the 
equilateral triangular arrangements are shown in Fig 3 
together with the Sparrow et al a analytical solution, 
which corresponds to the latter arrangement only. In 
addition to the excellent agreement between the two 
solutions, it can be seen that the equilateral triangular 
arrangement exhibits higher heat transfer rates than the 
square one because, for the same P/D, the former exhibits 
larger heated perimeter per flow area than the latter. 

-0.087 

0.145 0.145 

Fig 2 Predicted isotherms T* for fully-developed purely 
axial flow through a square arrangement of  P/O = 1.5 
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Fig. 4 Predicted local heat transfer coefficient distribution 
for fully-developed purely axial flow through (a) square 
arrangements of various P/D, and (b) equilateral- 
triar~ular arrangements of various P/D 

The predicted variation of local heat transfer 
coefficient h around the rod surface is shown in Fig 4 for 
the square and the equilateral-triangular arrangements 
respectively. Significant circumferential variation exists 
for small P/D because the closer the spacing the more a 

Heat transfer in tube assemblies 

rod is influenced by the presence of the surrounding rods; 
consequently, the velocity distribution is non-uniform 
and so is the heat transfer coefficient. For the same P/D a 
smaller circumferential variation is exhibited by the 
equilaterial triangular array due to the larger number of 
neighbours surrounding each rod: flow and heat transfer 
are therefore more similar to those in an annular duct. It is 
noteworthy that, for both arrangements, the maximum 
heat transfer coefficient is observed at the location of the 
largest passage between the rods, where velocities are 
high, while the minimum occurs at the narrowest passage. 

Fig 4(b) also shows the solution of Sparrow et al 3. 
The agreement between the solutions, for P/D = 1.5, is 
good. 

Purely transverse ful ly-developed f l ow  

Equations and boundary conditions 

In this case (inclination angle ® = 90 °) the term in Eqs (1) 
and (2) relating to the axial coordinate ~ vanish and the 
axial velocity component w is set to zero. Therefore, the 
governing equations take the form: 

Momentum equations in the ~ and q directions 
(~=u,v): 

1 0  l d  
IA 

I,/~ O~ ~# ~~-) - - / -~-  ~ ~ / ~ )  =S~' (7) 

Energy equation: 

1 0  1 0  
l~l n 0¢ (pl~uT)+~-~ (pl vr) 

1 L(kl .OT]_I__O k 1¢ 
let .O¢\cpl t o e ]  1¢/~ &,/ %1~ 0-q~ =0 (8) 

Continuity equation: 

1 O 1 d  ovl )=0 (9) 

Since no variations of flow conditions exist with axial 
direction ~, the solution of these equations is confined to a 
single cross-sectional plane ~-q .  The condition of full 
development is used for the imposition of the boundary 
conditions at inlet BA and outlet DG of the solution 
domain (Fig l(e)) as follows: the computational mesh is 
extended by one line EF and the temperature profile (as 
well as the profiles of the other variables) is transferred 
from line DG to line BA and from CJ to EF after each 
iteration during the solution. In this procedure, the 
increase in bulk fluid temperature DTb is calculated as: 

DTb- . (10) 
m, Cp 

where Q is the total heat input to the solution domain 
from the tubes per unit of time and n~ is the mass flow rate. 
DTb is then subtracted from the temperature profile of line 
DG before this profile is inserted at line BA and similarly 
DTb is added to that of line CJ before it is inserted at line 
EF. 

An alternative procedure has also been devised 2 
for imposing the repeating conditions at inlet and outlet. 
In this procedure, which leads to faster convergence, the 
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a i J 

0.O 

b 

O.0 

Fig 5 Predicted isotherms T* for fully-developed purely 
transverse flow through (a) an in-line square arrangement 
of P/D = 1.25 for Re c = 50 and Pr = 10, (b) an equilateral- 
triangular arrangement of P/i)=1.25 for Rec=50 and 
Pr = 10, (c) an in-line square arrangement of P/D = 1.25 for 
Rec = 10 and Pr = 10, and (d ) an in-line square arrangement 
of P/D = 1.25 for Re~ = 50 and Pr = 1 

normal grid arrangement is used and the cyclic conditions 
are incorporated implicitly into the ADI algorithm. 

The boundary condition of uniform heat flux q" is 
used on the solid boundaries (ie tube walls AJI and HGF, 
Fig l(e)) of the solution domain while on the upper and 
lower boundaries BCDE and IH (Fig l(e)) respectively, 

which are planes of symmetry, v-velocity is zero as are the 
normal gradients of temperature and u-velocity. 

Results 
Predicted contours of dimensionless temperature T* for 
in-line and staggered tube arrangements are shown in Fig 
5 for various values of Reynolds, Rec, and Prandtl, Pr, 
numbers. 

Comparison of Figs 5(a) and 5(b) reveals that for 
fixed values of Rec and Pr, higher T* are developed within 
the in-line subchannel (Fig 5(a)) than within the staggered 
one (Fig 5(b)). Heat is not, therefore, easily removed from 
the gap between the in-line tubes (recirculation zone), thus 
rendering the overall heat transfer poorer for the in line 
banks than for the staggered ones. 

The influence of Re~ on the temperature 
distribution is shown by comparing Figs 5(a) and 5(c). A 
significant temperature rise along the flow centre line is 
observed at Re¢ = 10 (Fig 5(c)) while the influence of flow 
field is strongly apparent at Rec = 50 (Fig 5(a)), where the 
isotherms are biased towards the outlet of the cross- 
section. These characteristics show that, as expected, for 
low Rec the temperature field is governed mainly by the 
effects of heat conduction, while for increasing Re¢ the 
effect of convection becomes increasingly important. 

Figs 5(a) and 5(d) illustrate the predicted influence 
of Pr on the temperature contours for an in-line arrange- 
ment at Re¢= 50. The isotherms for Pr= 1 (Fig 5(d)) 
indicate a significant temperature rise along the flow 
centre-line (ie strong influence of heat conduction) while 
for Pr= 10 (Fig 5(a)) the fluid in this region remains cool 
and the isotherms approximately follow the streamlines 
(ie the influence of convection is dominant). 

The predicted distribution of the local Nusselt 
number Nu around the periphery of the rods for an in-line 
arrangement (P/D = 1.5, Re~ = 100, Pr= 5) is given in Fig 
6(a), where comparison is made with Le Feuvre's 7 pre- 
dictions for the same conditions. Agreement is good. 

Fig 6(b) compares the prediced distribution of the 
local Nusselt number around the periphery of the tubes 
for an in-line arrangement (P/D = 1.3, Rec = 97, Pr = 528) 
with Zhukauskas et a111 measurements for the same 
conditions. Discrepancies of up to 15% are observed, 
which may be attributed to incomplete development of 
the flow and turbulence transition effects that may have 
been present in the experiments. The latter assumption is 
supported by the fact that the measured maximum Nu 
appears to be close to the reattachment point (tp = 140°). It 
is a turbulent flow characteristic to obtain maximum heat 
transfer at the reattachment point, where the near wall 
level of kinetic energy of turbulence attains a maximum 
value. 

The predicted effect of Re¢ on local Nu distribution 
around the tube periphery is shown in Fig 6(c), which 
corresponds to an in line arrangement of P/D = 1.5 for 
Pr=5. The maximum Nu is obtained for both Re¢= 10 
and Re~ = 100 on the top of the tubes (~p = 90°), where the 
highest velocity gradients occur, but the distribution for 
Re¢ = 10 is more symmetrical than the one for Rec = 100, 
where the convection effect is predominant. 

The predicted distribution of local Nu for the in- 
line square tube banks of different spacing is shown in Fig 
6(d) for Re¢ = 100 and Pr = 15: for P/D = 2 the distribution 
of Nu is considerably more uniform than the corre- 
sponding one for P/D = 1.5, thus showing little effect of the 
surrounding rods. For the closely spaced tube bank, the 
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Fig 6 Predicted local Nusselt number distribution for 
fully-developed purely transverse flow through (a ) an in-line 
square arrangement o fP/D = 1.5 for Rec = 100 and Pr = 5, 
(b ) an in-line square arrangement ofP/D = 1.3for Re~ = 97 
and Pr=528, (c) an in-line square arrangement of  

P/D = 1.5 for various Reynolds numbers and Pr = 5, (d) in- 
line square arrangements o fP/D = 1.5 and 2 for Re¢ = 100 
and Pr = 15, (e) an in-line square arrangement o fP/D = 1.5 
for Rec= 100 and various Prandtl numbers, and ( f )  a 
staggered square arrangement o fP/D = 2.135 for Re c = 10 
and various Prandtl numbers 

maximum Nu occurs on the top of the tube while for the 
more widely spaced one it is relatively flat and extends 
towards the front of the tube, ie the region where the fluid is 
impinging. This region becomes important for widely 
spaced banks because it is affected less by the recirculation 
z o n e  1 . 

The predicted effect of Pr on the local Nu is shown 
in Fig 6(e) for an in-line square tube bank of P/D = 1.5 at 
Re c = 100" higher Nu are obtained for higher Pr due to the 
increased temperature gradients near the tube surfaces, 
caused by the increased resistance to conduction. The 
influence of convection which causes the temperature 
gradients on the downstream tube to be greater than 
those on the upstream one, is also responsible for the 
asymmetry of Nu distribution about ~o=90 °. For the 
higher Pr, Nu is more non-uniform, thus showing the 
stronger influence of convection. The predicted influence 
of Pr on the local Nu distribution for the staggered square 
arrangement is similar (Fig 6(0). 

Due to the geometrical dissimilarity between the 
in-line and staggered tube arrangements, their local heat 
transfer characteristics are dissimilar (Figs. 6(e) and (f)). 
The maximum Nu is generally expectedto occur in the 
region of the highest yelocity gradients or around the 
stagnation point where the fluid is impinging. For the in- 
line tube bank (Fig 6(e)) maximum Nu is at ~0 = 90 °, ie in 
the region of the highest velocity gradients because the 
front of the tubes, where fluid should impinge, is covered 
by the recircu!ation zone 1. For the staggered arrangement 
(Fig 6(0), however, a flat maximum is obtained around the 
stagnation point (tp=180 °) since now recirculation 
appears only behind the tubes 1. 

Fig 7 compares the predicted average Stanton 
numbers at various Re¢ for both in-line square and 
staggered-square tube arrangements with the experi- 
mental data of Bergelin et al ~2 and with Massey's 
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Fig 7 'Modified" average Stanton numbers for fully- 
developed purely transverse flow through (a) in-line square 
arrangements of  various P/D and (b) staggered square 
arrangements of  various P/D 
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Fig 8 Predicted average Stanton number for fully- 
developed purely transverse flow through a staggered 
square arrangement of PilL)= 1.25 for Pr = 1 and 10 

numerical predictions s. Good agreement is obtained 
between the present predictions and the Bergelin et al data 
for the in-line arrangement (Fig 7(a)) provided Re¢ < 100. 
For Re¢ > 100 discrepancies are observed, probably due to 
the start of the transition to turbulent flow. For the 
staggered arrangement (Fig 7(b)) the present predictions 
lie between the experimental data and Massey's pre- 
dictions, agreement with both being satisfactory. For both 
arrangements the small disagreement with Bergelin et al 
experiments may be due to the present calculations being 
made for uniform field properties (which vary during the 
experiments) on the basis that the experimental corre- 
lation (ie the use of St pr21301w/pJo)°'14 ) w a s  proposed to 
allow for property variations: one can see in Fig 7(b) that 
for the staggered-square arrangement of P/D = 1.25, the 
present predictions for Pr = 1 are condensed to within 7% 
of those for Pr = 10. 

The effect of geometry on the overall heat transfer 
is illustrated in Fig 7: closely-spaced banks, where a 
greater ratio of heating surface per flow area is available 
and steeper velocity gradients occur, exhibit superior heat 
transfer properties than widely-spaced ones. For constant 
P/D, staggered arrangements exhibit superior heat 
transfer properties. 

The effect of Pr on the average heat transfer is 
illustrated in Fig 8, in the form of a plot of St  against Re~ 
for various Pr. The curves are almost parallel, suggesting 
that the effect of Pr can be eliminated by using as ordinate 
the product St Pr ~, where c is a constant, illustrated in Fig 
7(b) where c = 2/3. 

Purely transverse thermal developing f low 

Equations and boundary conditions 
In this case ((9 = 90 °) the problem is described by the same 
equations (Eqs (7)-(9)) which correspond to the fully- 
developed situation. The solution is again confined to a 
single cross-sectional plane ~-~/. 

As the flow enters laterally through the outer 
periphery of the assembly with some arbitrary (but axially 
invariant) inlet distribution it is successively changed as it 
passes through successive rows of tubes; it is of interest to 
predict the heat transfer development. It would be 

expensive, however, to extend the solution domain to 
cover a large number of flow channels, so the practice 
followed is to solve the governing equations in one 
channel after another, with the inflow boundary con- 
ditions for the one considered being obtained from the 
predicted outflow of the preceding channel. To allow this, 
each solution domain is extended by one line EF (Fig l(e)) 
to overlap slightly with the domain of the following 
channel, such that an interior grid line coincides with the 
inflow boundary of the downstream channel. After the 
solution for the first channel is obtained, the resulting 
profiles at that grid line are inserted at inflow boundaries 
in the calculation for the next channel. The outflow 
boundary conditions can only be estimated in this 
procedure: they are obtained by linear extrapolation of 
the variables from the interior, although other practices 
are possible. 

The boundary conditions imposed on the tube 
walls and the upper and lower boundaries are the same as 
for fully-developed transverse flow. 

Results 
Calculations were performed for an in-line square 
arrangement of P/D = 1.5 at Re¢ = 50 and 200 supplied 
with uniform velocity and temperature distributions at 
the inlet of the first row of tubes. The results are illustrated 
in Fig. 9, where both the local St (referred to the heat 
transfer within each individual subchannel)and the 
integrated value (referred to the overall heat transfer 
between the entry and the row of tubes in question) are 
plotted in terms of the number of rows. The local values 
show rapid heat transfer development, but also show that 
significantly higher St occur in the first two subchannels 
(the initial value is about 100°/0 higher than the fully- 
developed one at Rec = 50, and 150% higher at Rec = 200) 
whose effects on the integrated values persist some 
considerable distance downstream. 

No detailed data have been found against which 
these predictions may be tested, but two data points have 
been plotted in the above figure, corresponding to the 

12 integrated St measurements of Bergelin et al : these were 
obtained in a ten-row assembly which, according to the 
present predictions, would have reflected small, but 
significant, entry effects in the measurements. The present 
predictions, however, still fall slightly below the data. 
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Fig 9 Predicted 'modified' average Stanton number for 
developing purely transverse flow as a function of number 
of passages through an in-line square arrangement of 
P/D = 1.5 at Re¢ = 50 and 200 
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Uniformly inclined ful ly-developed f low 

Equations and boundary conditions 

In this case it is assumed that the bulk velocity vector 
makes everywhere the same angle with the tubes. The 
condition of full development of flow and heat transfer 
implies that all derivatives in Eqs (1) and (2) with respect 
to the axial coordinate ( vanish, with the exception of the 
axial pressure gradient term 8p/~( and the axial tem- 
perature gradient term ~(pwT)/d(. The momentum 
equations in the ~, ~/, ( directions therefore take the form 
of Eq (7) (for • = u, v, w) and the continuity relationship 
takes the form of Eq (9). The energy equation becomes: 

let~ O~ (pl~uT)+ (pl~vT)+ ~--~ (pwT) 

1 0 klnt~r~ 1 d kl~ 
lt/~ ~ l~ ~ - ~ / ] - / ~ - ~  1, ~ = 0  (11) 

Because oftbe simplifications performed, the solution can 
be confined to a single cross-sectional plane ~ -  ~/with the 
terms 8p/d~ (contained in the source term of w- 
momentum equation) and ~(pwT)/~ treated as follows. 
The term ~p/~ is prescribed as an input or it is adjusted 
during the solution procedure so that the desired axial 
mass flow rate may be obtained, as was the case with 
purely axial flow. The term ~(pwT)/~, for the case of the 
uniform wall heat flux boundary conditions, can be easily 
calculated ~ as: 

~3(pwT) { Q cos O cos O ~ ) 
= P W ~ c p P  L sin~9-~Cp P^ (12) 

where Pr is the longitudinal pitch of the bank and P~ is the 
dimension of the solution domain in the axial direction 
(Fig. l(c)). It is then inserted as a source term in the energy 
equation (11), as with the purely axial flow. 

The condition of full development in the transverse 
direction is employed to impose the repeating conditions 
at boundaries BA and DG of the solution domain (Fig 
l(e)) in the same manner as in the case of purely transverse 
fully-developed flow, with the exception that the increase 
in bulk fluid temperature DTb is not, in this instance, 
calculated by Eq (10), but by: 

D Tb = (Tb)r~ -- (T~)~  ̂ (13) 

where (T~)v~ is the hulk temperature through line DG (Fig 
l(e)) given by: 

f~i PUCp T dq 
( T~)~6 = (14) 

pUCp d~l. 

and (Tb)s~ is the bulk temperature through line BA, given 
by an analogous equation. 

The boundary condition of uniform wall heat flux 
is imposed on the solid boundaries (ie tube walls AJI and 
HGF, Fig l(e)) of the solution domain while on the 
boundaries BCDE and IH, which are planes of symmetry, 
v-velocity is zero as are the normal gradients of 
temperature and of all other variables. 

Results 
Fig 10(a) compares predicted dimensionless temperature 
contours T* for purely axial flow (0  = 0 °) and inclined 

Heat transfer in tube assemblies 

flow (0=40.5 °) for an in-line square arrangement of 
P/D=l.25 for Pr=10. For ® = 0  ° the isotherms are 
symmetrical as expected but for 0=40 .5  ° they are all 
biased towards the outlet of the cross-section, thus 
showing the influence of the transverse component of the 
flow. Lower temperature gradients are observed for 
O = 40.5 ° than for O = 0 ° thus showing that higher heat 
transfer coefficients are expected for an inclined flow than 
for a purely axial one. 

Fig 10(b) compares predicted dimensionless tem- 
perature contours T* for purely transverse flow (O = 90 °) 
and inclined flow (O = 40.5 °) for the same tube arrange- 
ment and Prandtl number as above. The distortion of the 
isotherms between the tubes, in both the transverse and 
the inclined cases, is due to the recirculation zone of the 
transverse flow in this region 1. Slightly less distortion is 
observed, however, for the inclined case due to the axial 
flow component which tends to offset the effect of 
transverse flow. Lower temperature gradients are 
observed in the inclined case. It is therefore expected that 
for the same Rec, higher heat transfer coefficients will be 
exhibited by an inclined flow than a purely transverse one. 

The effect of the transverse component of the flow 
on the temperature distribution within the cross-section 
remains very strong even in nearly-axial flows; Fig 10(c) 
compares the isotherm T* for a nearly-axial flow 
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Fig 10 Predicted dimensionless temperature contours for 
fully=developed inclined flow through an in-line square 
arrangement ofP/D = 1.25 for Pr = 10 (a) comparison with 
purely axial fully-developed flow, (b) comparison with 
purely transverse fully-developed flow, and (c ) comparison 
with purely axial fully=developed flow 
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Fig. 11 Predicted distribution of local heat transfer 
coefficient for fully-developed inclined, axial and 
transverse flow through an in-line square arrangement of 
P/D = 1.25 at Pr = 10 

(19 = 1.2 °) with those for a purely axial one (19 = 0°). The 
temperature gradients for 19 = 1.2 ° are lower than the ones 
for 19 = 0 ° and therefore better heat transfer is expected 
from a nearly-axial than from a purely axial flow. 

The distorting influence of transverse flow on the 
distribution of the local heat-transfer coefficient h around 
the periphery of the tubes is shown in Fig 11, where h/his 
plotted for ® = 0 °, 40.5 ° and 90 °. The h distribution for the 
inclined case (19 = 40.5 °) is the most non-uniform but it is 
much more similar in shape to the distribution for purely 
transverse flow (19 = 90 °) than to that for purely axial flow 
(O  = 0°). 

Fig 12 shows the predicted average Nusselt 
number Nu as a function of the axial Reynolds number 
Rea for various values of the transverse Reynolds number 
Rec. Fig 12(a) is for in-line square arrangements of P/D = 2 
at P r =  50 and Fig 12(b) for P/D= 1.25 at P r =  10; the 
inclination angles 19 are marked at various locations 
along the curves. The line corresponding to Re~--0 tie 
19 = 0 °, purely axial flow) is a straight line of zero slope, ie 
Nu is independent of Rea, as mentioned earlier. For 
constant non-zero Rec, however, the pattern of the curves 
differs: 

(i) For ® greater than about 85 °, Nu is practically 
constant and equal to its corresponding purely-transverse 
flow value because the effect of the axial component of the 
inclined flow is negligible. 
(ii) For intermediate values of 19, ie 10°<O<85  °, Nu 
smoothly increases with Rea because, due to the increasing 
axial component of the inclined flow, the thickness of the 
boundary layer on the tube surfaces decreases thus 
increasing heat transfer. 
(iii) For the lower non-zero values of 19 (ie 19 < 10°), Nu 
becomes practically constant for each constant value of 
Rec. The explanation for this is that since the cross-flow 
velocities are now very small compared to the axial 
component, the Nu = constant behaviour of purely-axial 
flow is recovered but Nu is now higher than that for the 
latter case due to the effect of the transverse motions in 
distorting the axial velocity distribution. It should be 
emphasized that for a fully-developed inclined flow there 
is a strong and direct influence of the transverse flow field 

on the axial momentum distribution even if the former is 
very small compared to the axial component of the flow1. 
(iv) For very small values of O tie ®---~0°), Nu tends to its 
purely-axial flow value (but this does not appear in Fig 
]2). 

A practically-important conclusion stemming 
from (iii) is that for highly-axial flows (0 ° < ® < 10 °) Nu is 
a function of Rec only. This function is shown in Fig 13 for 
an in-line square arrangement of P/D = 2 for Pr = 50. 

The predicted effect of inclination on the overall 
heat-transfer behaviour is shown in a more compact form 
in the correlation of Fig 14(b), where Nu is plotted versus 
the Reynolds number Re of the inclined flow for various 
inclination angles (9. For 19--constant, Nu increases with 
Re as is the case with purely transverse flow. For Re = 
constant, Nu increases with O (the maximum Nu being 
obtained for purely transverse flow) in a non-uniform 
way: a rapid increase is observed for small values of 19 tie 
® < 4 5  ° ) while for higher (9 the rate of increase falls. 
Comparison of Figs 14(a) with 14(b) reveals that these 
trends are in agreement with those predicted by the 
Dwyer correlation 13: 

/'sin 19 + sin 2 19",~ 1/2 
Nu=fL. ~ ) )  (4.6+0.193Pe °'614) (15) 

where f is a function of the geometrical characteristics of 
the tube bank and Pe is the Peclet number. The value of 
function f used in Fig 14(a) was found by tuning the 
correlation to fit the present predictions for purely 
transverse flow at Rec = 50. However this correlation does 
not hold in the limiting case of purely axial flow, for which it 
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Fig 12 Predicted average Nusselt number as a function of 
the axial Reynolds number Re, for various transverse 
Reynolds numbers Rec, for fully-developed inclined flow 
through an in-line square arrangement (a) of P / D =  2 at 
Pr=50  and (b) of P/D=l.25 at P r = 1 0  
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Fig 13 Predicted average N usselt number as a function of 
the transverse Reynolds number R G for fully-developed 
inclined flow with inclination angle 0 ° < ® < 10 ° through an 
in-line square arrangement of P/D = 2 at Pr = 50 

underestimates Nu (ie it gives Nu = 0 for ® = 0°). This is, 
probably, the reason why Eq (15) gives lower values of Nu 
at small ® than the present predictions (Fig 14). For higher 
values of ®, however, reasonable quantitative agreement is 
observed. 

C o n c l u s i o n  

This prediction method has been successfully tested 
against experimental and theoretical data, mainly for heat 
transfer under conditions of fully-developed axial and 
transverse flow, as there was hardly any such information 
about the developing and inclined flow cases. It is 
concluded from the overall performance of the method 
that it allows calculations of heat transfer in tube banks to 
be made for a wider range of circumstances than has been 
possible to date. 

It is believed that the results presented provide an 
insight into the hitherto almost unexplored situations of 
heat transfer under conditions of developing transverse 
and fully-developed inclined flow. The main findings 
include: 

In the case of developing purely transverse flow, heat 
transfer develops rapidly for both low and high (laminar) 
Reynolds numbers, but also considerably higher Stanton 
numbers occur in the first two subchannels whose effect 
on the overall heat transfer persist a considerable distance 
down -stream. 

Inclined flows exhibit superior heat transfer behaviour 
than a purely axial or a purely transverse flow with the 
same Reynolds and Prandtl numbers. The effect of the 
transverse component of the inclined flow is very strong 
even for highly-axial flows, thus rendering the distribution 
of the temperature and of the local heat transfer coefficient 
much more similar in shape to that of a purely transverse 
flow than to that of a purely axial one. 

Although for a purely axial flow the average Nusselt 
number Nu is constant, for an inclined flow with fixed 
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Fig 14 Average Nusselt number as a function of the 
Reynolds number Re for fully-developed inclined flow 
through an in-line square arrangement of P / D = 2  for 
Pr = 50 (a) Dwyer correlation 13 and (b) present predictions 

transverse Reynolds number Rec, Nu is practically 
constant for the higher values of inclination angle O. Nu 
then increases with decreasing ® and becomes again 
almost constant for the lower values of ® (but not for ® 
less than 0.2 °, where Nu attains its purely axial flow value), 
ie the Nu =constant behaviour, of purely axial flow is 
recovered but Nu is now higher than that for the latter 
case thus showing the strong influence of the transverse 
flow component even for h!ghly axial flows. 

At a fixed Reynolds number Re of the inclined flow, Nu 
increases with increasing ® (in a decreasing rate as ® 
tends to 90°), the maximum value being obtained for a 
purely transverse flow (0  = 90 °) and the minimum for a 
purely axial one (® =0°). At a fixed ®, Nu increases with 
Re. 
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